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ABSTRACT: The effect of a direct interchain exchange
reaction (transesterification) on the microtacticity of poly-
mer chains is studied with theory and a Monte Carlo sim-
ulation. Kinetic equations describing the evolution of the
distribution over the type and length of the dyad sequen-
ces in the course of transesterification are derived. From
this detailed consideration, the dependence of the average
lengths of the isotactic and syndiotactic sequences on time
is calculated for a melt of an initially isotactic homopoly-
mer. It is shown that the microtacticity change proceeds at
a rate similar to that of copolymer randomization during
transesterification in polymer blends and much more

slowly than the relaxation of the molecular mass distribu-
tion. The reacting chains for a long time consist of isotactic
sequences of decreasing length and mostly isolated syndio-
tactic dyads. Possible effects of varying the ratio of the rate
constants of the elementary reactions between dyads of
different types are investigated. The agreement between
the calculations and results of the Monte Carlo simulation
is satisfactory. � 2007 Wiley Periodicals, Inc. J Appl Polym Sci
105: 60–66, 2007
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INTRODUCTION

The mutual orientation of side groups along a polymer
chain (microtacticity) is an important factor that makes
chemically identical macromolecules different in their
reactivity and physical properties, such as their crystal-
linity and biodegradability. Correlations in side-group
positions (stereoregularity) arising in the course of
polymer synthesis can be afterwards affected bymacro-
molecular reactions. Interchain exchange (interchange)
is a very common reaction that accompanies the synthe-
sis and processing of condensation polymers and
results in the random redistribution of unit sequences
between different macromolecules. In blends, it leads
to the formation of copolymers andmay be desirable or
not, depending on the type and aim of processing.

The evolution of the molecular mass and block
length distributions during interchange reactions has

been extensively studied both theoretically and experi-
mentally.1,2 Practically useful approaches have been
suggested that make it possible to quantitatively inter-
pret data of NMR,3,4 neutron scattering,5 X-ray scatter-
ing,6 and mass spectrometry7 related to reacting sys-
tems. Interchange reactions are incorporated into a
general computational scheme for modeling polycon-
densation kinetics.8 However, no methods have so far
been proposed to describe the influence of interchanges
on the polymer microtacticity, even though that effect
obviously takes place. For example, a 1H- and 13C-
NMR study of transesterification in the course of the
stereoselective polymerization of lactides9 has demon-
strated that in late stages of the reaction, the microtac-
ticity of a biodegradable polymer that is formed is
affected by interchange reactions, whereas in early
stages, it is mostly determined by the type of initiator.

The purpose of this study is to develop a computa-
tional method describing the evolution of polymer
microtacticity during interchange reactions. The
approach is based on our recent theoretical studies of
interchange kinetics in polymer blends.10,11 To dem-
onstrate its applicability, the interchange in an ini-
tially isotactic homopolymer melt is considered, and
the results are checked by a Monte Carlo simulation.

MODEL

Consider a homopolymer melt of M chains. Let each
repeating unit contain a side group characterized by
one of two spatial configurations, which we denote as
: and ;. Neighbor units belonging to one chain and
possessing the same configuration (:: or ;;) form an
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isotactic dyad (I), whereas neighboring units of differ-
ent configurations (:; or ;:) add up to a syndiotactic
dyad (S). Dyads constitute sequences; for example,
:::: is an isosequence of length 3 (in dyads), whereas
:;:;:;:; is a syndiosequence of length 7. A sequence
of dyads represents the microtacticity of any chain
just as a unit sequence describes the structure of a bi-
nary copolymer. Consequently, a similar kinetic scheme
may be used when we consider the effect of an inter-
change on the distribution of isodyad and syndiodyad
sequences and on the unit distribution in copolymers.

Assume that an interchange reaction may take
place between any two dyads neighboring in space.
Such a transformation is called a direct interchange,
and transesterification is an example. Reactions
involving chain ends, such as acidolysis and alcoholy-
sis, are not allowed in our system, but their considera-
tion seems not very different from what we do here,
just as in the case of direct and end-group inter-
changes in polymer blends.12

Consider reversible elementary reactions that
change the dyad distribution. Four of them, depicted
in Figure 1, are adopted as the most likely to occur.
Five rate constants—kI1 (reaction I þ I ? I þ I), kI2
(I þ I ? S þ S), kIS (I þ S ? I þ S), kS1 (S þ S ? S
þ S), and kS2 (S þ S ? I þ I)—are equal to the proba-
bilities (per unit of time) of the corresponding re-
actions between dyads neighboring in space.

In principle, some other elementary reactions are
also possible, such as I þ I ? I þ S, but they require
the rotation of the end that appears as a result of the
chain cleavage, unlike the four reactions considered
above. Hence, we infer that such reactions are much
less probable and neglect them. If necessary, they can
be included in the kinetic scheme in a standard way.

Note also that we consider interchange reactions
between dyads rather than repeating units and
neglect cyclization. It introduces an error of the order
of the inverse of the number-average polymerization

degree (1/N), but for long chains (N � 1), such an
error is small.

Kinetic considerations

The derivation of kinetic equations begins with choos-
ing relevant variables. If a detailed description is
needed, one has to consider the distribution of dyad
sequences over their type and length. The solution of
that problem is given in the appendix. However, usu-
ally only a few variables are practically important, that
is, related to measurable quantities. In our case, these
may be the average lengths of the iso- and syndio-
sequences (NI and NS, respectively). They are expressed
through the total numbers of dyads (n), isosequences
(mI), and syndiosequences (mS) and the total fraction of
isotactic dyads (f) as NI ¼ nf/mI and NS ¼ n(1 � f)/
mS. Considering the effect of elementary reactions
shown in Figure 1 on the dyad sequence population,
we can easily write down the kinetic equations directly
for the variables f, mI, and mS:
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Figure 1 Elementary interchange reactions and their rate constants.
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where z is the average number of dyads with which a
chosen dyad may react at any moment of time. It is
not necessary to specify z because it is included in the
effective time (t) introduced below. The first term in
eqs. (2) and (3) reflects the formation of new iso- and
syndiosequences, whereas the second and third terms
account for the disappearance of existing sequences
due to the interchange at their terminal dyads and
dyads of the opposite kind flanking the sequences,
respectively.

Equations (1)–(3) form a closed set, which may be
solved provided that the rate constants, n and M, are
known and the initial conditions are specified. Per-
forming the solution, we can find the dependence of
the average iso- and syndiosequence lengths on time,
NI(t) and NS(t).

It is interesting to note that in the case of equal rate
constants, kI1 ¼ kI2 ¼ kIS ¼ kS1 ¼ kS2 ¼ k, the consid-
ered model is equivalent to the model of the direct
interchange in an equimolar blend of polymers A and
B of the equal initial polymerization degree NA0

¼ NB0, which is characterized by the single rate con-
stant k. Indeed, a syndiodyad corresponds to dyad AB,
whereas an isodyad corresponds to dyad AA or BB. It
can therefore be shown that the equations for the total
number of A sequences and AB dyads derived in ref.
10 may be obtained from eqs. (1)–(3) as well.

Monte Carlo simulation

A set of 10,000 macromolecules of an initial polymeri-
zation degree of 100 (99 dyads) is generated. Each
macromolecule consists of blocks that are formed by
monomer units of the same orientation (: or ;), and
the block lengths are stored. Such a description
is equivalent to the dyad language: a block of length i
> 1 is an isosequence of length i � 1, whereas a syn-
diosequence of i dyads is formed by i � 1 subsequent
blocks of the unit length. Blocks are changed in the
course of transesterification proceeding via the route
shown in Figure 1.

The reaction is modeled as follows. The greatest
constant among kI1, kI2, kIS, kS1, and kS2 is found and
all rate constants are divided by that value to get the
reduced rate constants lying in the interval (0, 1). Two
different macromolecules and a dyad on each of them
are arbitrarily chosen for the reaction. The kind of
dyad (I or S) is determined, whereas the mutual ori-
entation is specified at random. After that, the possi-
ble reaction route is unambiguous. A random number
belonging to the interval (0, 1) is chosen and com-
pared with the corresponding reduced rate constant.
If the latter is greater, then the reaction takes place,
and corresponding changes are made in the array of
information. The conversion is measured in the num-
ber of cleavages per average macromolecule (of 100
units).

RESULTS AND DISCUSSION

Let us consider the case when all macromolecules are
initially isotactic. Our purpose is to describe their loss
of stereoregularity via transesterification. We will
obtain the numerical solution of the kinetic equations
[eqs. (1)–(3)] and carry out the corresponding Monte
Carlo simulation.

It is seen that eq. (1) contains only variable f, which
is easily found in the explicit form fðtÞ ¼ ½1
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kI2=kS2
p

tanhð ffiffiffiffiffiffiffiffiffiffiffiffi
kI2kS2

p
zt=2Þ��1. Then, the remaining

equations, eqs. (2) and (3), may be considered as a set
with respect to mI and mS. However, because there is
no real time in a Monte Carlo simulation, it is more
convenient to introduce an effective time (t):

t ¼ z
n

M

Z t

0

dy
�
2kISfðyÞð1� fðyÞ

�

þ 1

2

�
ðkI1 þ kI2Þf2ðyÞ þ ðkS1 þ kS2Þð1� fðyÞÞ2

�

which is equal to the number of cleavages for a chain
of N ¼ n/M dyads by time t. As a result, eqs. (1)–(3)
are transformed into a set of ordinary differential
equations for variables f(t), mI(t)/n, and mS(t)/n,
which may be solved by numerical methods under
the initial conditions f(t ¼ 0) ¼ 1, mI(0)/n ¼ 1/99,
and mS(t)/n ¼ 0. For calculations, Maple software
was used. The functions f(t), mI(t)/n, and mS(t)/n
were evaluated at 0 � t � 100 for different rate con-
stant ratios.

Transesterification in an initially isotactic monodis-
perse system was also modeled by a Monte Carlo
simulation as described above. Each numerical ex-
periment was repeated several times to provide statis-
tical noise damping, and the results were then aver-
aged. It was found that the molecular mass distribu-
tion relaxed rapidly in agreement with theoretical
predictions13 and reported simulation data14 and after
� 10 cleavages per average chain converged to the
most probable (Flory) distribution. The distribution of
isotactic sequences over the length evolves much
more slowly: although at t � 10 it also takes the form
of the Flory distribution, its average is still much
more than unity (Fig. 2). The complete loss of stereo-
regularity of the macromolecules requires each inter-
changeable bond to react on average once, which cor-
responds to t � 100. Note that the same degree of
conversion is needed for the relaxation of the block
length distribution in an initial blend of two homo-
polymers of 100 repeating units.10,15

The dependence of the fraction of isodyads (f), the
average length of the isosequence (NI ¼ nf/mI), and
the average length of the syndiosequence (NS ¼ n(1 �
f)/mS) on t is plotted in Figures 3–5, where curves
1–3 represent the results of numerical calculations
for three rate constant sets: (1) kI1/kI2/kIS/kS1/kS2 ¼ 1
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: 1 : 1 : 1 : 1, (2) kI1/kI2/kIS/kS1/kS2 ¼ 1 : 0.04 : 0.2 : 0.04
: 1, and (3) kI1/kI2/kIS/kS1/kS2 ¼ 0.04 : 1 : 0.02 : 1 : 0.04;
the points are the data of the corresponding Monte
Carlo simulation.

It is seen that the relative shortening of the isose-
quences (Fig. 4) proceeds much more intensively than
the formation (Fig. 3) and growth of the syndio-
sequences (Fig. 5), especially in the early stages of the
reaction (at t < 10).

If the formation of syndiodyads is hampered in
comparison with that of isodyads, then the stereore-
gularity breakdown proceeds essentially more slowly
(curves 2), whereas reducing the rate constants
related to the formation of isodyads has a much less
pronounced effect on the process (curves 3). The
dependence of NS(t) resembles straight lines until t

¼ 100 (Fig. 5), most of the syndiosequences being
formed by one to two dyads.

The agreement between the results of the numerical
calculations and Monte Carlo simulation is excellent
for f and NI and satisfactory for NS. A little more in-
tensive growth of syndiosequences in the Monte
Carlo simulation might be attributed to the peculiar-
ities of the algorithm. Indeed, the first step of the
modeling consists in choosing two macromolecules.
Because the molecular mass distribution rapidly con-
verges to the Flory distribution, in which the number
of chains rapidly falls with their polymerization
degree, short chains undergo transesterification more
often than they would if two dyads were directly cho-
sen for the reaction. Accordingly, short chains contain
most of the formed syndiodyads, which are more
crowded and therefore form longer sequences. An
improved algorithm for modeling transesterification
will be presented elsewhere.

It may be concluded that in the course of transester-
ification, the reacting chains for a long time consist
mainly of isosequences of decreasing length and con-
tain short syndiosequences as configurational defects.
Such a result may be practically important. For exam-

Figure 2 Evolution of the differential mass fraction of
monomer units entering isotactic blocks of length N (rI) in
the course of transesterification. The point sets correspond
to the different number of cleavages per average chain
[t ¼ 1(1), 3(2), 5(3), and 10(4)]. Unreacted chains at N
¼ 100 are not shown. All rate constants are equal: kI1 ¼ kI2
¼ kIS ¼ kS1 ¼ kS2. The curve corresponds to the Flory distri-
bution with the same average block length as that at t ¼ 10.

Figure 3 Dependence of the isotactic dyad fraction (f) on
the number of cleavages per average chain (t). Theoretical
calculations are shown by curves, and the Monte Carlo
simulation is shown by points. The kI1/kI2/kIS/kS1/kS2 rate
constant ratios are (1) 1 : 1 : 1 : 1 : 1, (2) 1 : 0.04 : 0.2 : 0.04:1,
and (3) 0.04 : 1 : 0.02 : 1 : 0.04. Initially, all chains consist of
100 units.

Figure 4 Average length of an isotactic sequence (NI) ver-
sus the number of cleavages per average chain (t). The
designations are shown in Figure 3.

Figure 5 Average length of a syndiotactic sequence (NS)
versus the number of cleavages per average chain (t). The
designations are shown in Figure 3.
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ple, if the initial polymer is crystallizable, then this
property will be preserved during transesterification
up to the high conversion degree. Then, it may
appear impossible to follow the early stages of chang-
ing polymer stereoregularity during transesterifica-
tion by NMR spectrometry because the concentration
of syndiodyads and syndiotriads is small.

Thus, we have suggested the first theoretical model
describing the evolution of polymer chain microtac-
ticity in the course of transesterification. The model
revealed some interesting features and was success-
fully tested by a Monte Carlo simulation.

APPENDIX: DETAILED KINETIC
CONSIDERATIONS

Let mIi be the total number of sequences of i isodyads
(i-sequences I). As shown in ref. 10, it is convenient to
distinguish three types of i-sequences I: mI1i chains,
mI2i end blocks, and mI3i internal blocks in chains con-
taining both I and S dyads. Thus, the distribution of
isosequences is determined by a set of variables, {mI1i,
mI2i, mI3i} (i ¼ 1 . . . 1), so that mIi ¼ mI1i þ mI2i þ mI3i.
A similar set, {mS1i, mS2i, mS3i}, characterizes the distri-
bution of syndiosequences over their length.

Now consider how the elementary reactions shown
in Figure 1 influence the distribution of isosequences.
The role of reaction I þ I ? I þ I is almost equivalent
to that of reaction A–A when the evolution of the
block length distribution in the course of the direct
interchange is described:10

R1ðIÞjR2 þ R3ðIÞlR4 ! R1ðIÞiR4 þ R3ðIÞjþl�iR2

The only difference is that in the latter case the type
of reacting unit remains unchanged, whereas two
reacting I dyads yield either two I or two S dyads.
Hence, the number of i-sequences I of type d formed
in a unit of time due to the reaction I þ I ? I þ I may
be written as follows:10
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CA; ĉ2 ¼

0 1 2

1 1 1

2 1 0

0
B@

1
CA;
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n is the total number of dyads, and z is the average
number of dyads with which a chosen dyad may
react at the same moment of time.

As a result of reaction I þ I ? S þ S, an i-sequence I
of type d may appear after the cleavage of a longer (j
> i) j-sequence I of type a (a ¼ 1, 2, or 3):

R1ðIÞjR2 þ R3IR4 ! R1ðIÞiSR4 þ R3SðIÞj�i�1R2

The number of such events per unit of time equals

X3
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zfkI2g
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0
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1
A

f ¼P1
i¼1 imIi=n is the fraction of isodyads at the con-

sidered moment of time.
An elementary reaction, I þ S ? I þ S, is analogous

to a reaction between A and B units in a blend of A
and B polymers. Here several ways of forming an i-
sequence I are possible. Let first a reacting dyad I
belong to a j-sequence. Depending on the position of
the dyad S that undergoes the reaction, one of the fol-
lowing situations (I–IV) is realized.

In case I, dyad S is a terminal dyad of l-sequence I
(l < i):

R1ðIÞjR2 þ R3SðIÞlR4 ! R1ðIÞiR4 þ R3SðIÞjþl�iR2

In this case, i-sequences I (i ‡ 2) are formed per unit
of time in the amount of
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In case II, dyad S is located at a chain end:

R1ðIÞjR2 þ R3S ! R1ðIÞi þ R3SðIÞj�iR2

The rate of i-sequence formation due to the reaction
(case II) is

X3
a¼1

�
zkISf

ðaÞ
d =ð2nÞ

�
mSe

X1
j¼i

mIaj

where
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f̂ ¼
1 1=2 0
0 1=2 1
0 0 0

0
@

1
A

mSe ¼
P1

i¼1ð2mS1i þmS2iÞ is the total number of end
blocks S, and fd

(a) depends on the type of the initial
(a) and formed (d) sequences I. Because the total
number of chains (M) is constant, we can write mSe

¼ 2M � 2mI1 � mI2, where mI1 ¼
P1

i¼1 mI1i and
mI2 ¼

P1
i¼1 mI2i are the total numbers of isotactic

chains and end blocks I, respectively.
In case III, dyad S is flanked by another dyad S:

R1ðIÞjR2 þ R3SSR4 ! R1ðIÞiSR4 þ R3SðIÞj�iR2

Such a reaction yields
P3

a¼1ðzkISgðaÞd =ð2nÞÞmSS

�P1
j¼i mSaj i-sequences I of type d per unit of time,

where mSS ¼ n(1 � f) � M þ mI1 � mI3 is the total
number of SS dyad pairs and mI3 ¼

P1
i¼1 mI3i is the

total number of internal blocks I.
Note that in cases I–III, a reacting dyad S and a

forming i-sequence I belong to different chains. The
opposite situation (IV) is also possible when a dyad S
after the reaction is situated at the boundary of a new-
born i-sequence I:

R1ðIÞjR2 þ R3SR4 ! R3SðIÞiR2 þ R1ðIÞj�iR4

For that elementary reaction, the rate of i-sequence I
formation equals
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An elementary reaction, S þ S ? S þ S, does not
lead to an appearance of new isosequences; there-
fore, we turn to another reaction, S þ S ? I þ I.
Here also, several lines are possible:

In case V, both reacting dyads S are flanked by iso-
sequences that finally are brought to one chain, thus
forming an i-sequence I:

R1ðIÞjSR2 þ R3SðIÞi�j�1R4 ! R1ðIÞiR4 þ R3IR2

The number of such events per unit of time is
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In case VI, one of the reacting dyads S borders on
an (i � 1)-sequence I, another one borders on a se-
quence S:

R1ðIÞi�1SR2 þ R3SSR4 ! R1ðIÞiSR4 þ R3IR2

In the course of such a reaction,
P3

a¼1ðzkS2qðaÞd =ð2nÞÞ
�mSSmIai�1 i-sequences I of type d are formed per
unit of time, where

q̂ ¼
0 0 0
0 1 0
0 0 2

0
@

1
A

In case VII, dyad S neighbors with an (i � 1)-
sequence I, whereas another reacting dyad S is a ter-
minal one:

R1ðIÞi�1SR2 þ R3S ! R1ðIÞi þ R3IR2

It yields
P3

a¼1

�
zkS2r

ðaÞ
d =ð4nÞ

�
mSemIai�1 new i-sequen-

ces I per unit of time, where
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0 0 2
0 0 0

0
@

1
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In case VIII, both reacting dyads S are flanked by
syndiosequences:

R1SSR2 þ R3SSR4 ! R1SISR4 þ R3IR2

In that case, zkS2m
2
SS/(2n

2) internal (d ¼ 3) isolated
dyads I are formed per unit of time.

In case IX, one of the reacting dyads S borders on a
syndiosequence, whereas another dyad is a terminal
one:

R1SSR2 þ R3S ! R1SI þ R3IR2

Such a reaction results in the formation of zkS2mSSmSe/
(2n2) dyads I isolated at chain ends (d ¼ 2).

In case X, both reacting dyads S are terminal:

R1Sþ SR4 ! I þ R1IR4

It is found that zkS2m
2
Se/(8n

2) of isotactic dimers
(chains of two units, d ¼ 1) are formed per unit of
time in that way.

Isosequences disappear because of the reactions of
their constituent dyads I and the reactions, in which
dyads S are involved that flank those sequences. In
the first case, the number of I-sequences of length i
and type d decreases by [f(kI1 þ kI2)/2 þ (1 � f)
kIS]imIdi per unit of time, whereas in the second case
this occurs by (fkIS þ (1 � f)kS2)sdmIdi, where the ma-
trix ŝ ¼ (0,1/2,1).
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Now it is possible to gather contributions of all con-
sidered situations in the kinetic equation describing
the change in the number of i-sequences I of type d in
the course of transesterification:

1
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X3
a¼1

g
ðaÞ
d

X1
j¼i

mIaj þ
�
kI2fþ kISð1� fÞ�

2

�
X3
a¼1

g
ðaÞ
d

X1
j¼iþ1

mIaj þ kS2
4n

X3
a;b¼1

h
ðabÞ
d

Xi�2

j¼1

mIajmIbi�j�1

þ kS2
X3
a¼1

lðaÞd mIai�1 þ kS2di;1ad �
��ðkI1 þ kI2Þf=2

þ kISð1� fÞ�iþ ðkISfþ kS2ð1� fÞÞsd
�
mIdi; ðA1Þ

Matrices ĉ, d̂, f̂ , ĝ, ĥ, and ŝ and quantities f, mSe, and
mSS have already been defined. di,1 is the Kronecker
delta:

l̂ ¼ mSS

2
q̂þmSe

4
r̂ ¼ 1

n

0 mSe=4 0
0 mSS=2 mSe=2
0 0 mSS

0
@

1
A

â ¼ 1

2n2

m2
Se=4

mSemSS

m2
SS

0
@

1
A

To carry out the numerical solution of eq. (A.1), it is
necessary to append the initial condition mIdi(t ¼ 0)
¼ mIdi0 and specify the total numbers of chains and
dyads. As soon as the dependence mIdi(t) is found, it

is possible to calculate the mass function of the block
length distribution, CIdi ¼ imIdi/�i,dimIdi, which is
equal to the probability for an arbitrarily chosen
dyad I to belong to an i-sequence of type d (isotactic
chain or end block I or internal block I).

The distributions of I and S sequences change inde-
pendently during the course of transesterification,
just as the A and B block length distributions.10

Therefore, to get the kinetic equation for syndiose-
quences, it is just enough to replace f by 1 � f and
mutually change indices I and S in eq. (A.1).

Introducing now the total numbers of isodyads,
f ¼P1

i¼1 imIi=n, and iso- and syndiosequences,
mI ¼

P3
d¼1

P1
i¼1 mIdi and mS ¼P3

d¼1

P1
i¼1 mSdi, respec-

tively, we can reduce detailed eq. (A.1) by summa-
tions to more practically useful eqs. (1)–(3).
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